Exposure is not how dark or how light an image looks!
When it comes to online discussions, it's helpful if everyone has the same meaning for a word. In the world of photography, there has been a lot of confusion in just what is meant be "exposure".
Traditionally, "exposure" refers to the amount of light reaching the film, measured in light per unit area. If we think of light being comprised of photons, then we can think of "exposure" as how many photons per unit area reached the film, while the shutter was open.
Note that this is not the same as how "bright" the light was on the film. You can halve the brightness, and leave the shutter open for twice as long, and you get the same exposure.
The three primary factors in exposure are:
- Subject Lighting
- Shutter Speed
- Aperture
With film the relationship between the exposure and the film "speed" determined how dense a negative you got. If the exposure was too high (too many photons), then you got a dense negative. Too low an exposure, and the negative was too thin.
Most negative films have an "S" shaped response curve. You got the highest quality negative by getting the mid tones of your image into the middle of the response curve. If the negative was too dense or too thin, you would lose contrast and/or shadow/highlight detail.
None of this controlled how dark or light your final print looked. That was determined at print time. You could easily make a dark or light print from a thin, normal or dense negative. How dark or light the print looked was determined not by the exposure, but by the person (or automated machine) making the print.
When it comes to digital, exposure refers to the amount of light reaching the sensor instead of the film. The vast majority of digital cameras capture raw data from the sensor. Very roughly speaking, the raw data contains a count of how many photons were seen by each pixel while the shutter was open.
How dark or light the image looks is determined when that raw data is converted into a traditional image (usually a JPEG). That conversion is done in the camera to build camera-produced JPEGs. You can also have the camera store the raw data in a "raw" file, and do the conversion later on with a computer.
The ISO speed affects the "context" for interpreting the raw data. At a low ISO setting, you need a high photon count in order to produce a light area in the JPEG. At a high ISO setting, a much lower photon count produces a light area.
For instance, on a particular camera, a photon count of 10,000 might produce a dark pixel at ISO 100, and a light pixel at ISO 10,000. In both cases the exposure is the same (same number of photons seen), but the different ISO settings yield different interpretations of those photon counts.
In summary, "exposure" refers to the light reaching the sensor. the ISO setting drives how we interpret the recorded data.
Keep in mind that the above is a very rough approximation. In the real world, raw data is a little more complicated than simple photon counts. Some cameras will scale the readings based on the ISO settings. Furthermore, ISO is not the only factor in how the data is interpreted, other settings (White balance, Highlight Tone Priority, Auto Lighting Optimizer, etc.) also play a roll.