Absolutely. Long post follows, as you can see, clearly. 😀
Or to put it another way:
Perspective is the distortion caused by viewing the 3D world from a unique point in space. Every unique point has it's own unique perspective, or it's own unique distortion caused by viewing from a single position.
To a point this also happens when we view a photo, or a 2D representation of a 3D space. Viewing an image from a unique point in space also causes us to see distortion in the perspective of that image. It also follows that there is a viewing position for a photo where the perspective, or unique distortion matches that or the original scene. This is said to be the "correct perspective" and is a point that can be worked out mathematically using the geometry of image formation. All very well explained above.
Tom, the problem I had with your post is that you inserted the term "exact same" when viewed where all descriptions use words like apparent and natural. You seem to make an assumption, or a leap, from working out the centre of perspective to find the point where the apparent relationships are the same, to this is the point where the perspective in the image will be "exactly' the same and "mathematically" correct.
There is a problem with this and it is in the nature of the viewer, or the nature of human vision.
There is a layer of processing between the back of the retina and the view you think comes from the back of your retina that is uniquely human and is "Relative, Historical and Empirical" rather than "Logical and Mathematical". This doesn't negate the maths of image formation, how a camera works or even how an image is formed on the back of the retina. But it does prevent you from trying to describe human perception of perspective in mathematical terms, or as the function of image geometry. It doesn't mean the maths is incorrect, it just means that there is a difference between how a camera sees and how the eye sees and that that difference is abstract, not logical.
Evolution has discovered that our chances of survival are better if we have a consistent understanding of our surroundings. This has very important consequences. It means that on the list of priority "consistent understanding" come above "absolute" and "mathematically correct". In short it means that the brain sacrifices, or fails to preserve, the mathematical relationship between objects in favor of retaining a consistent understanding.
I will relate this theory and apply it to a more comprehensive explanation of "telephoto compression", see how it fits.
In you previous post about "The Ansel Adams Fallacy" you branched into pictures with copies inserted as insets. I struggle to see your point, and frankly dismiss this as pseudo science as you seem to be cherry picking and applying conclusions that suit your narrative whilst ignoring the blatantly obvious. Yes if you line up converging parallels you inevitably scale the picture in accordance with a mathematical relationship and smaller objects look further away. Great, but you can't then work out the maths by measuring the relative sizes of the girls and then declare that she looks 7 times further away because that's the mathematical answer you arrived at. Yes, she looks smaller.
But those images also very convincingly show that perspective is indeed a function of position and not scaling. As @xpatUSA observed, all you did was align converging straight lines and the foreshortening, or complete perspective, doesn't fit.
The foreshortening of objects is a function of distance, it is a function of position, or it is a function of the distortion caused by a unique viewpoint, or it is a function of perspective. It is predicted by the maths of linear perspective and can also be entirely proved by the geometry of image formation. All objects are foreshortend by distance from a unique viewpoint and they are always foreshortened.
So the interesting question is not why we see it in shots taken with a telephoto lens, but why you don't see it in the normal landscape. And the answer is in the "Relative, Historical and Empirical" nature of human vision, and it does relate to viewing images from the "centre of perspective" so they are viewed with "correct perspective".
Perspective is the distortion caused by viewing from a unique position and each position creates a unique perspective. In other words things change as you move. But the human brain is very good at subtracting that distortion so the world [1] seems to be constant as you move through it. The side of a barn with its converging parallels doesn't elongate as you move towards it or shorten as you move away, your understanding of it's size remains constant. It's why we don't see distant barns as being foreshortened, because the brain is compensating and allowing you to see the real size of the barn. Also, and interestingly, we do not always estimate the distance of said barn correctly and my have assumed that it's further away. In this instance we will probably see the barn as being slightly longer than it actually is but we will never question this. We simply assume our vision is absolute and assume the barn is actually that distance away and is exactly the size we think it is. hen we approach our understanding modifies as our perception creates a more accurate picture, but again we never usually question this, just assume we always saw it correctly. It also why holding an image from a known camera position to prove yourself correct about perspective is not a foolproof method but may be subject to confirmation bias.
As for telephoto compression Tom's description of viewing from the "correct perspective" is the answer, but without the "exactly the same" and "mathematically correct" additions. We see telephoto compression when we view an image from the wrong distance, too close, or in front of the center of perspective. The image has not changed, only our interpretation of it has. When we view an image of a barn foreshortened by perspective from the centre of perspective for that image then we see the correct perspective, or natural perspective. It is important to realise that we are seeing an image of a foreshortened barn and we are forming an understanding of it's actual size based on our experience of seeing distant barns, at this distance from the print we don't see it as foreshortened. Move closer to the print and your vision will fail to cancel the effect of foreshortening and it will become visible in the image, it is important to remember that the image has not changed only your interpretation of it has.
But vision is "Relative, Historical and Empirical", we rely on memory and do make mistakes, incorrect assumptions when viewing both images and the real world. The brain promotes consistent understanding over preserving absolute mathematical relationships so we don't really see perspective correctly in any image, we simply assume our vision is absolute and that what we see is an absolute truth that can be proved by maths.
[1] It is one of those strange abstract relationships that is the nature of human perception that we believe our vision to be absolute because it presents a consistent understanding, but that consistent understanding is achieved by disregarding the absolute truth when it conflicts with a consistent understanding. I find there to be many contradiction like this at the very centre of human perception. Odd.